Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Epilepsy is one of the most common neurological diseases globally, affecting around 50 million people worldwide. Fortunately, up to 70 percent of people with epilepsy could live seizure-free if properly diagnosed and treated, and a reliable technique to monitor the onset of seizures could improve the quality of life of patients who are constantly facing the fear of random seizure attacks. The scalp-based EEG test, despite being the gold standard for diagnosing epilepsy, is costly, necessitates hospitalization, demands skilled professionals for operation, and is discomforting for users. In this paper, we propose EarSD, a novel lightweight, unobtrusive, and socially acceptable ear-worn system to detect epileptic seizure onsets by measuring the physiological signals from behind the user's ears. EarSD includes an integrated custom-built sensing, computing, and communication PCB to collect and amplify the signals of interest, remove the noises caused by motion artifacts and environmental impacts, and stream the data wirelessly to the computer or mobile phone nearby, where data are uploaded to the host computer for further processing. We conducted both in-lab and in-hospital experiments with epileptic seizure patients who were hospitalized for seizure studies. The preliminary results confirm that EarSD can detect seizures with up to 95.3 percent accuracy by just using classical machine learning algorithms.more » « less
-
Organic thin-film transistors (OTFTs) are drawing increasing attention due to their unique advantages of mechanical flexibility, low-cost fabrication, and biodegradability, enabling diverse applications that were not achievable using traditional inorganic transistors. With a growing number of complex applications being proposed, the need for expediting the design process and ensuring the yield of large-scale designs with organic technology increases. A complete digital standard cell library plays a crucial role in integrating the emerging organic technology into existing computer-aided-design (CAD) flows. In this paper, we present the design, fabrication, and characterization of a standard cell library based on bottom gate, top contact pentacene OTFTs. We also propose a commercial tool compatible, RTL-to-GDS flow along with a new organic process design kit (PDK) developed based on our process. To the best of our knowledge, this is the first open-source organic standard cell library, enabling the community to explore this emerging technology.more » « less
-
Abstract The leakage of quantum information out of the two computational states of a qubit into other energy states represents a major challenge for quantum error correction. During the operation of an error-corrected algorithm, leakage builds over time and spreads through multi-qubit interactions. This leads to correlated errors that degrade the exponential suppression of the logical error with scale, thus challenging the feasibility of quantum error correction as a path towards fault-tolerant quantum computation. Here, we demonstrate a distance-3 surface code and distance-21 bit-flip code on a quantum processor for which leakage is removed from all qubits in each cycle. This shortens the lifetime of leakage and curtails its ability to spread and induce correlated errors. We report a tenfold reduction in the steady-state leakage population of the data qubits encoding the logical state and an average leakage population of less than 1 × 10−3throughout the entire device. Our leakage removal process efficiently returns the system back to the computational basis. Adding it to a code circuit would prevent leakage from inducing correlated error across cycles. With this demonstration that leakage can be contained, we have resolved a key challenge for practical quantum error correction at scale.more » « less
-
We demonstrate a high dynamic range Josephson parametric amplifier (JPA) in which the active nonlinear element is implemented using an array of rf-SQUIDs. The device is matched to the 50 Ω environment with a Klopfenstein-taper impedance transformer and achieves a bandwidth of 250–300 MHz with input saturation powers up to −95 dBm at 20 dB gain. A 54-qubit Sycamore processor was used to benchmark these devices, providing a calibration for readout power, an estimation of amplifier added noise, and a platform for comparison against standard impedance matched parametric amplifiers with a single dc-SQUID. We find that the high power rf-SQUID array design has no adverse effect on system noise, readout fidelity, or qubit dephasing, and we estimate an upper bound on amplifier added noise at 1.6 times the quantum limit. Finally, amplifiers with this design show no degradation in readout fidelity due to gain compression, which can occur in multi-tone multiplexed readout with traditional JPAs.more » « less
-
Inherent symmetry of a quantum system may protect its otherwise fragile states. Leveraging such protection requires testing its robustness against uncontrolled environmental interactions. Using 47 superconducting qubits, we implement the one-dimensional kicked Ising model, which exhibits nonlocal Majorana edge modes (MEMs) with parity symmetry. We find that any multiqubit Pauli operator overlapping with the MEMs exhibits a uniform late-time decay rate comparable to single-qubit relaxation rates, irrespective of its size or composition. This characteristic allows us to accurately reconstruct the exponentially localized spatial profiles of the MEMs. Furthermore, the MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism. Our work elucidates the complex interplay between noise and symmetry-protected edge modes in a solid-state environment.more » « less
-
Abstract Indistinguishability of particles is a fundamental principle of quantum mechanics 1 . For all elementary and quasiparticles observed to date—including fermions, bosons and Abelian anyons—this principle guarantees that the braiding of identical particles leaves the system unchanged 2,3 . However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions 4–8 . Hence, it can change the observables of the system without violating the principle of indistinguishability. Despite the well-developed mathematical description of non-Abelian anyons and numerous theoretical proposals 9–22 , the experimental observation of their exchange statistics has remained elusive for decades. Controllable many-body quantum states generated on quantum processors offer another path for exploring these fundamental phenomena. Whereas efforts on conventional solid-state platforms typically involve Hamiltonian dynamics of quasiparticles, superconducting quantum processors allow for directly manipulating the many-body wavefunction by means of unitary gates. Building on predictions that stabilizer codes can host projective non-Abelian Ising anyons 9,10 , we implement a generalized stabilizer code and unitary protocol 23 to create and braid them. This allows us to experimentally verify the fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of using the anyons for quantum computation and use braiding to create an entangled state of anyons encoding three logical qubits. Our work provides new insights about non-Abelian braiding and, through the future inclusion of error correction to achieve topological protection, could open a path towards fault-tolerant quantum computing.more » « less
-
Abstract Practical quantum computing will require error rates well below those achievable with physical qubits. Quantum error correction1,2offers a path to algorithmically relevant error rates by encoding logical qubits within many physical qubits, for which increasing the number of physical qubits enhances protection against physical errors. However, introducing more qubits also increases the number of error sources, so the density of errors must be sufficiently low for logical performance to improve with increasing code size. Here we report the measurement of logical qubit performance scaling across several code sizes, and demonstrate that our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number. We find that our distance-5 surface code logical qubit modestly outperforms an ensemble of distance-3 logical qubits on average, in terms of both logical error probability over 25 cycles and logical error per cycle ((2.914 ± 0.016)% compared to (3.028 ± 0.023)%). To investigate damaging, low-probability error sources, we run a distance-25 repetition code and observe a 1.7 × 10−6logical error per cycle floor set by a single high-energy event (1.6 × 10−7excluding this event). We accurately model our experiment, extracting error budgets that highlight the biggest challenges for future systems. These results mark an experimental demonstration in which quantum error correction begins to improve performance with increasing qubit number, illuminating the path to reaching the logical error rates required for computation.more » « less
-
Abstract Systems of correlated particles appear in many fields of modern science and represent some of the most intractable computational problems in nature. The computational challenge in these systems arises when interactions become comparable to other energy scales, which makes the state of each particle depend on all other particles1. The lack of general solutions for the three-body problem and acceptable theory for strongly correlated electrons shows that our understanding of correlated systems fades when the particle number or the interaction strength increases. One of the hallmarks of interacting systems is the formation of multiparticle bound states2–9. Here we develop a high-fidelity parameterizable fSim gate and implement the periodic quantum circuit of the spin-½ XXZ model in a ring of 24 superconducting qubits. We study the propagation of these excitations and observe their bound nature for up to five photons. We devise a phase-sensitive method for constructing the few-body spectrum of the bound states and extract their pseudo-charge by introducing a synthetic flux. By introducing interactions between the ring and additional qubits, we observe an unexpected resilience of the bound states to integrability breaking. This finding goes against the idea that bound states in non-integrable systems are unstable when their energies overlap with the continuum spectrum. Our work provides experimental evidence for bound states of interacting photons and discovers their stability beyond the integrability limit.more » « less
-
International Ocean Discovery Program Expedition 359 was designed to address changes in sea level and currents, along with monsoon evolution in the Indian Ocean. The Maldives archipelago holds a unique and mostly unread Indian Ocean archive of the evolving Cenozoic icehouse world. Cores from eight drill sites in the Inner Sea of the Maldives provide the tropical marine record that is key for better understanding the effects of this global evolution in the Indo-Pacific realm. In addition, the bank geometries of the carbonate archipelago provide a physical record of changing sea level and ocean currents. The bank growth occurs in pulses of aggradation and progradation that are controlled by sea level fluctuations during the early and middle Miocene, including the mid-Miocene Climate Optimum. A dramatic shift in development of the carbonate edifice from a sea level–controlled to a predominantly current-controlled system appears to be directly linked to the evolving Indian monsoon. This phase led to a twofold configuration of bank development: bank growth continued in some parts of the edifice, whereas in other places, banks drowned. Drowning steps seem to coincide with onset and intensification of the monsoon-related current system and subsequent deposition of contourite fans and large-scale sediment drifts. As such, the drift deposits will provide a continuous record of Indian monsoon development in the region of the Maldives. A major focus of Expedition 359 was to date precisely the onset of the current system. This goal was successfully completed during the expedition. The second important outcome of Expedition 359 was groundtruthing the hypothesis that the dramatic, pronounced change in style of the carbonate platform sequence stacking was caused by a combination of relative sea level fluctuations and ocean current system changes. These questions are directly addressed by the shipboard scientific data. In addition, Expedition 359 cores will provide a complete Neogene δ13C record of the platform and platform margin sediments and a comparison with pelagic records over the same time period. This comparison will allow assessment of the extent to which platform carbonates record changes in the global carbon cycle and whether changes in the carbon isotopic composition of organic and inorganic components covary and the implications this has on the deep-time record. This determination is important because such records are the only type that exists in deep time.more » « less
An official website of the United States government

Full Text Available